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In this paper we study the Casimir effect for conformally coupled massless scalar
fields on background of Static dS4+1 spacetime. We will consider the general plane–
symmetric solutions of the gravitational field equations and boundary conditions of
the Dirichlet type on the branes. Then we calculate the vacuum energy-momentum
tensor in a configuration in which the boundary branes are moving by uniform proper
acceleration in static de Sitter background. Static de Sitter space is conformally related
to the Rindler space, as a result we can obtain vacuum expectation values of energy-
momentum tensor for conformally invariant field in static de Sitter space from the
corresponding Rindler counterpart by the conformal transformation.

KEY WORDS: brane; rindler space; de sitter space; casimir effect; energy-momentum
tensor.

1. INTRODUCTION

The Casimir effect is regarded as one of the most striking manifestation of
vacuum fluctuations in quantum field theory. The presence of reflecting bound-
aries alters the zero-point modes of a quantized field, and results in the shifts in
the vacuum expectation values of quantities quadratic in the field, such as the
energy density and stresses. In particular, vacuum forces arise acting on con-
straining boundaries. The particular features of these forces depend on the nature
of the quantum field, the type of spacetime manifold and its dimensionality, the
boundary geometries and the specific boundary conditions imposed on the field.
Since the original work by Casimir in 1948 (Casimir, 1948) many theoretical and
experimental works have been done on this problem (see, e.g., Mostepanenko and
Trunov, 1997; Plunien et al., 1986; Lamoreaux, 1999; The Casimir Effect, 1999;
Bordag et al., 2001; Kirsten, 2001; Bordag, 2002; Milton, 2002) and references
therein). There are several methods to calculate Casimir energy. For instance, we
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can mention mode summation, Green’s function method (Plunien et al., 1986),
heat kernel method (Kirsten, 2001) along with appropriate regularization schemes
such as point separation (Christensen, 1976, 1978; Adler et al., 1977) dimensional
regularization (Deser et al., 1976, see also Capper and Duff, 1974, 1975), zeta
function regularization (Hawking, 1977; Blau et al., 1988; Elizalde et al., 1994;
Elizalde, 1995; Bytsenko et al., 2003). Recently a general new methods to com-
pute renormalized one–loop quantum energies and energy densities are given in
Graham et al. (2002a, 2002b) (see also Elizalde, 2003).

The Casimir effect can be viewed as a polarization of vacuum by boundary
conditions. Another type of vacuum polarization arises in the case of an external
gravitational fields (Birrel and Davies, 1982; Grib et al., 1994). It is well known
that the vacuum state for an uniformly accelerated observer, the Fulling–Rindler
vacuum (Fulling, 1973, 1977; Unruh, 1976; Boulware, 1975; Avagyan et al.,
2002), turns out to be inequivalent to that for an inertial observer, the familiar
Minkowski vacuum. Quantum field theory in accelerated systems contains many
of special features produced by a gravitational field avoiding some of the diffi-
culties entailed by renormalization in a curved spacetime. In particular, near the
canonical horizon in the gravitational field, a static spacetime may be regarded as a
Rindler–like spacetime. Rindler space is conformally related to the static de Sitter
space and to the Robertson–Walker space with negative spatial curvature. As a
result the expectation values of the energy–momentum tensor for a conformally in-
variant field and for corresponding conformally transformed boundaries on the de
Sitter and Robertson–Walker backgrounds can be derived from the corresponding
Rindler counterpart by the standard transformation (Birrel and Davies, 1982). The
authors in Birrel and Davies (1982) have been shown that the Minkowski vacuum
contains a thermal spectrum of Rindler particles. One can also demonstrate this
by showing that the Green functions in Minkowski vacuum are Rindler thermal
Green functions. In a similar way one can relate the vacua of static de Sitter space
and de Sitter space have the same curvature, but static de Sitter space is a member
of Rindler class, while de Sitter space is a member of Minkowski space.

The past few years witnessed a growing interest among particle physicists and
cosmologists toward models with extra space-like dimensions. This interest was
initiated by string theorists (Witten, 1996; Horava and Witten, 1996; Banks and
Dine, 1996), who exploited a moderately large size of an external 11th dimension
in order to reconcile the Planck and string/GUT scales. Taking this idea further,
it was shown that large extra dimensions allow for a reduction of the fundamen-
tal higher-dimensional gravitational scale down to the TeV-scale (Arkani-Hamed
et al., 1998, 1999; Antoniadis et al., 1998). An essential ingredient of such a
scenario is the confinement of the standard model fields on field theoretical de-
fects, so that only gravity can access the large extra dimensions. These models are
argued to make contact with an intricate phenomenology, with a variety of con-
sequences for collider searches, low-energy precision measurements, rare decays
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and astroparticle physics and cosmology. An alternative solution to the hierarchy
problem was proposed in Randall and Sundrum (1999). This higher dimensional
scenario is based on a non-factorizable geometry which accounts for the ratio
between the Planck scale and weak scales without the need to introduce a large
hierarchy between fundamental Planck scale and the compactification scale. The
model consists of a spacetime with a single S1/Z2 orbifold extra dimension. In
this context, the Casimir energy arising between the two static boundaries has been
computed in Fabinger and Hořava (2000), Mirabelli and Peskin (1998), in the first
of these two works, the backreaction on the geometry was taken into account. The
same problem has been considered in five-dimensional anti-deSitter space in Nojiri
et al. (2000), Brevik et al. (2001). Soon, the generalization of an AdS, flat or dS
brane in the AdS bulk (Kachru et al., 2000), and of a flat or dS brane in dS bulk
were studied carefully (Ito, 2002a). The localization of gravity in these models has
also been discussed (Ito, 2002b). The bulk Casimir effect for a conformal or mas-
sive scalar when the bulk represents five-dimensional AdS or dS space with two
or one four-dimensional dS brane, has been considered in Elizalde et al. (2003a)
(see also Elizalde and Quiroga Hurtado, 2004; Elizalde et al., 2003b; Cognola
et al., 2003a, 2003b). The recently proposed cyclic model of the universe (Khoury
et al., 2001; Steinhardt and Turok, 2002) is also based on this framework in which
the motion and collision of two such branes is responsible for the Big-Bang of the
standard cosmology.

Recent astronomical observations of supernovae and cosmic microwave back-
ground (Riess et al., 1998; Perlmutter et al., 1999; de Bernardis et al., 2000;
Bennett et al., 2003; Tegmark et al., 2003) indicate that the universe is accel-
erating and can be well approximated by a world with a positive cosmological
constant. If the universe would accelerate indefinitely, the standard cosmology
leads to an asymptotic dS universe. De Sitter spacetime plays an important role
in the inflationary scenario, where an exponentially expanding approximately dS
spacetime is employed to solve a number of problems in standard cosmology. In
this paper we are interested in studying the possible effects of the Casimir energy
in an scenario like the one mentioned before in which two branes are moving by
uniform acceleration through the static de Sitter vacuum. The complete analysis
of the problem is in general too involved to obtain explicit analytic results and,
for that reason, we will consider a simplified model in which the two branes are
perfectly flat, ignoring possible gravitational effects. In any realistic model of a
brane collision process it will be necessary to consider the acceleration and the
brane curvature (Rasanen, 2002). To see similar model in which the two branes
are moving with constant relative velocity refer to (Maroto, 2003), as the author
of this refrence have been mentioned “the present analysis would be the first
(velocity-dependent) correction to the flat static case” then may be could say that
our model is second (accelerated -dependent) correction to the static case.
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This problem for the conformally coupled Dirichlet and Neumann mass-
less scalar and electromagnetic fields in four dimensional Rindler spacetime was
considered by Candelas and Deutsch (1977). Investigation of local physical charac-
teristics in the Casimir effect, such as expectation value of the energy-momentum
tensor, is of considerable interest. In addition to describing physical structure of
the quantum field at a given point, the energy-momentum tensor acts as the source
in the Einstein equations and therefore plays an important role in modeling a self-
consistent dynamics involving the gravitational field. Here we will investigate
the vacuum expectation values of the energy-momentum tensor for the massless
scalar field with conformal curvature coupling and satisfying Dirichlet boundary
condition on the infinite plane in five spacetime dimension. Here we use the results
of Avagyan et al. (2002) to generate vacuum energy–momentum tensor for the
static de Sitter background which is conformally related to the Rindler spacetime.
Previously this method has been used in Setare and Mansouri (2001) to drive the
vacuum stress on parallel plates for scalar field with Dirichlet boundary condition
in de Sitter space. Also this method has been used in Saharian and Setare (2003)
to derive the vacuum characteristics of the Casimir configuration on background
of conformally flat brane-world geometries for massless scalar field with Robin
boundary condition on plates.

2. VACUUM EXPECTATION VALUES FOR THE
ENERGY-MOMENTUM TENSOR

In this paper we will consider a conformally coupled massless scalar field
ϕ(x) satisfying the equation

(
∇µ∇µ + 3

16
R

)
ϕ(x) = 0, (1)

on background of a dS4+1 spacetime. In Eq. (1) ∇µ is the operator of the covariant
derivative, and R is the Ricci scalar for the corresponding metric gik . In static
coordinates xi = (t, r, θ, θ2, φ), dS metric has the form

ds2
dS = gikdxi dxk =

(
1 − r2

α2

)
dt2 − dr2

1 − r2

α2

− r2 d�2
3, (2)

where d�2
3 is the line element on the 3–dimensional unit sphere in the Euclidean

space, and the parameter α defines the dS curvature radius. Note that R = 12/α2.
Our main interest in the present paper is to investigate the vacuum expectation
values (VEV’s) of the energy–momentum tensor for the field ϕ(x) in the back-
ground of the above de Sitter spacetime induced by two parallel plates moving with
uniform proper acceleration. we will consider the case of a scalar field satisfying
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Dirichlet boundary condition on the surface of the plates:

ϕ |ξ=ξ1= ϕ |ξ=ξ2= 0. (3)

The presence of boundaries modifies the spectrum of the zero–point fluctuations
compared to the case without boundaries. This results in the shift in the VEV’s
of the physical quantities, such as vacuum energy density and stresses. This is the
well known Casimir effect.

First of all let us present the dS line element in the form conformally related
to the Rindler spacetime. With this aim we make the coordinate transformation
xi → x ′i = (τ, ξ, x′), x′ = (x ′2, x ′3, x ′4) (see Birrel and Davies, 1982, for the case
3 + 1-dimensional case)

τ = t

α
, ξ =

√
α2 − r2

�
, x ′2 = r

�
sin θ cos θ2,

x ′3 = r

�
sin θ sin θ2 cos φ, x ′4 = r

�
sin θ sin θ2 sin θ2 sin φ, (4)

with the notation

� = 1 − r

α
cos θ. (5)

Under this coordinate transformation the dS line element takes the form

ds2
dS = g′

ikdx ′i dx ′k = �2
(
ξ 2dτ 2 − dξ 2 − dx′2) . (6)

In this form the dS metric is manifestly conformally related to the Rindler space-
time with the line element ds2

R:

ds2
dS = �2ds2

R, ds2
R = gRikdx ′i dx ′k = ξ 2dτ 2 − dξ 2 − dx′2, g′

ik = �2gRik.

(7)
The Casimir effect with boundary conditions (3) on two parallel plates moving with
uniform proper acceleration on background of the Rindler spacetime is investigated
in Avagyan et al. (2002) for a scalar field with a Dirichlet and Neumann boundary
condition. The expectation values of the energy-momentum tensor for a scalar
field ϕR(x ′) in the Fulling-Rindler vacuum can be presented in the form of the sum

〈
0R|T k

i [gRlm, ϕR]|0R

〉 = 〈
0̃R|T k

i [gRlm, ϕR]|0̃R

〉 + 〈
T k

i [gRlm, ϕR]
〉(b)

, (8)

where |0R〉 are |0̃R〉 are the amplitudes for the vacuum in the Rindler space in
presence and absence of the branes respectively,

〈
T k

i [gRlm, ϕR]
〉(b)

is the part of
the vacuum energy-momentum tensor induced by the branes. In the case of a
conformally coupled massless scalar field for the part without boundaries one has

〈
0̃R|T k

i [gRlm, ϕR]|0̃R

〉 = δk
i

32π2ξ 5

∫ ∞

0

ω4dω

e2πω + 1

(
1

4ω2
+ 1

)
. (9)
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For a scalar field ϕR(x ′), satisfying the Dirichlet boundary condition, the boundary
induced part in the region between hypersurface have the form (Avagyan et al.,
2002)

〈
T k

i [gRlm, ϕR]
〉(b) = A4δ

k
i

∫ ∞

0
dkk4

∫ ∞

0
dω

{
sinh πω

π
f (i)[D̃iω(kξ, kξ2)]

− Iω(kξ1)

Iω(kξ2)

F (i)[Dω(kξ, kξ2)]

Dω(kξ1, kξ2)

}
, (10)

where

A4 = 1

4π5/2�(3/2)
. (11)

Also we have introduced the notation

D̃iω(kξ, kξ2) = Kiω(kξ ) − Kiω(kξ2)

Iiω(kξ2)
Iiω(kξ ), (12)

and the functions F (i)[G(z)], i = 0, . . . , 4 are as following

F (i)[G(z)] = f (i)[G(z), ω → iω]. (13)

Here for a given function G(z) we use the notations

f (0)[G(z)] = 1

8

∣∣∣∣dG(z)

dz

∣∣∣∣
2

+ 3

16z

d

dz
|G(z)|2 + 1

8

[
1 + 7

ω2

z2

]
|G(z)|2, (14)

f (1)[G(z)] = −1

2

∣∣∣∣dG(z)

dz

∣∣∣∣
2

− 3

16z

d

dz
|G(z)|2 + 1

2

(
1 − ω2

z2

)
|G(z)|2, (15)

f (i)[G(z)] = −|G(z)|2
3

+ 1

8

[∣∣∣∣dG(z)

dz

∣∣∣∣
2

+
(

1 − ω2

z2

)
|G(z)|2

]
;

i = 2, 3, 4 (16)

where G(z) = Diω(z, kξ2), which given by following expression, and the indices
0,1 correspond to the coordinates τ , ξ respectively,

Diω(kξ, kξ2) = Iiω(kξ2)Kiω(kξ ) − Kiω(kξ2)Iiω(kξ ). (17)

To find the vacuum expectation values generated by the branes in the dS4+1 space,
first we will consider the corresponding quantities in the coordinates (τ, ξ, x′) with
the metric (6). The latters are found by using the standard transformation formula
for the conformally related problems:

〈
0dS|T k

i

[
g′

lm, ϕ
] |0dS

〉 = �−5
〈
0R|T k

i [gRlm, ϕR] |0R
〉 + 〈

T k
i

[
g′

lm, ϕ
]〉(an)

, (18)
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where the second summand on the right is determined by the trace anomaly and is
related to the divergent part of the corresponding effective action by the relation
(Birrel and Davies, 1982)

〈
T k

i

[
g′

lm, ϕ
]〉(an) = 2g′kl δ

δg′il(x)
Wdiv[g′

mn, ϕ]. (19)

Note that in odd spacetime dimensions the conformal anomaly is absent and
the corresponding anomaly part vanishes:〈

T k
i

[
g′

lm, ϕ
]〉(an) = 0. (20)

The formulae given above allow us to present the dS vacuum expectation
values in the form similar to (8):〈

0dS|T k
i

[
g′

lm, ϕ
] |0dS

〉 = 〈
0̃dS|T k

i

[
g′

lm, ϕ
] |0̃dS

〉 + 〈
T k

i

[
g′

lm, ϕ
]〉(b)

, (21)

where
〈
0̃dS|T k

i

[
g′

lm, ϕ
] |0̃dS

〉
are the vacuum expectation values in the dS space

without boundaries and the part
〈
T k

i

[
g′

lm, ϕ
]〉(b)

is induced by the branes. Confor-
mally transforming the Rindler results one finds〈

0̃dS|T k
i

[
g′

lm, ϕ
] |0̃dS

〉 = �−5
〈
0̃R|T k

i |0̃R
〉 + 〈

T k
i

[
g′

lm, ϕ
]〉(an)

, (22)
〈
T k

i

[
g′

lm, ϕ
]〉(b) = �−5

〈
T k

i [gRlm, ϕR]
〉(b)

. (23)

Under the conformal transformation g′
ik = �2gRik , the field ϕR will change

by the rule

ϕ(x ′) = �−3/2ϕR(x ′), (24)

where the conformal factor is given by expression (5). The vacuum expectation
values of the energy-momentum tensor in coordinates are obtained from expres-
sions (22) and (23) by the standard coordinate transformation formulae. As before,
we will present the corresponding components in the form of the sum of purely
dS and boundary parts:〈

0dS|T k
i [glm, ϕ] |0dS

〉 = 〈
0̃dS|T k

i [glm, ϕ] |0̃dS
〉 + 〈

T k
i [glm, ϕ]

〉(b)
. (25)

By using the relations (4) between the coordinates for the purely dS part one
finds

〈
0̃dS|T k

i [glm, ϕ] |0̃dS
〉 = (α2 − r2)−

5
2

32π2�(2)ξ 5

∫ ∞

0

ω4dω

e2πω + 1

×
(

1

4ω2
+ 1

)
diag

(
−1,

1

4
,

1

4
,

1

4
,

1

4

)
. (26)

This formula generalizes the result for 3 + 1-dimension given, for instance, in
Birrel and Davies (1982). As the for boundary induced energy-momentum tensor
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the spatial part is not isotropic, the corresponding part in the coordinates xi is
more complicated:

〈
T k

i [glm, ϕ]
〉(b) = �−5

〈
T k

i [gRlm, ϕR]
〉(b)

, i, k = 0, 3, 4, (27)

〈
T 1

1 [glm, ϕ]
〉(b) = (cos θ − r/α)2

�7

〈
T 1

1 [gRlm, ϕR]
〉(b)

+1 − r2/α2

�5
sin2 θ

〈
T 2

2 [gRlm, ϕR]
〉(b)

, (28)

〈
T 2

1 [glm, ϕ]
〉(b) = (r/α − cos θ ) sin θ

r�7

{〈
T 1

1 [gRlm, ϕR]
〉(b)

− 〈
T 2

2 [gRlm, ϕR]
〉(b)

}
, (29)

〈
T 2

2 [glm, ϕ]
〉(b) = 1 − r2/α2

�7
sin2 θ

〈
T 1

1 [gRlm, ϕR]
〉(b)

+ (r/α − cos θ2)

�7

〈
T 2

2 [gRlm, ϕR]
〉(b)

, (30)

where the expressions for the components of the boundary induced energy-
momentum tensor in the Rindler spacetime are given by formula (10)–(16). As
we see the resulting energy-momentum tensor is non-diagonal.

In the discussion above we have considered the vacuum energy-momentum
tensor of the bulk. For a scalar field on manifolds with boundaries in addition to
the bulk part the energy-momentum tensor contains a contribution located on the
boundary. For arbitrary bulk and boundary geometries the expression of the surface
energy-momentum tensor is given in Saharian (2003). In the case of a conformally
coupled scalar field the transformation formula forthe surface energy-momentum
tensor under the conformal rescaling of the metric is the same as that for the
volume part. For our problem in this paper, the surface energy-momentum tensor
is obtained from the corresponding Rindler counterpart by a way similar to that
described above. The expression for the latter is given in Saharian (2003).

3. CONCLUSION

Over the last few years a lot of interest has been raised on the possibility that
our universe is a 3−brane embedded in a higher dimensional spacetime. Ordinary
matter fields are assumed to live on the brane while gravity propagates in the whole
spacetime. The main part of the work done in this direction refers to the branes
sitting at a prescribed point of an extra dimension. However, it is tempting, even
inspired by D − p-brane models, to consider that the three-brane is somehow let
to move in the bulk.
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In the present paper we have investigated the Casimir effect for a conformally
coupled massless scalar field between two boundary branes moving by uniform
acceleration, on background of the five-dimensional static de Sitter spacetime.
We have assumed that the scalar field satisfies Dirichlet boundary condition on
the branes. The static de Sitter spacetime is conformally related to the Rindler
spacetime, then the vacuum expectation values of the energy-momentum tensor are
derived from the corresponding Rindler spacetime results by using the conformal
properties of the problem. The vacuum expectation value of the energy-momentum
tensor for a brane in dS spacetime consists of two parts given in Eq. (21). The
first one corresponds to the purely dS contribution when the boundary is absent.
It is determined by formula (22), where the second term on the right is due to the
trace anomaly and is zero for odd spacetime dimensions. The second part in the
vacuum energy-momentum tensor is due to the imposition of boundary conditions
on the fluctuating quantum field. The corresponding components are related to the
vacuum energy-momentum tensor in the Rindler spacetime by Eqs. (27)–(30) and
the Rindler tensor is given by formulae (10)–(13). Unlike to the purely dS part,
the boundary induced part of the energy-momentum tensor is non-diagonal and
depends on both dS static coordinates r and θ .
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